Introduction
To begin with, recall that VLAN is essentially a broadcast domain. Private VLANs (PVANs) allow splitting the domain into multiple isolated broadcast “subdomains”, introducing sub-VLANs inside a VLAN. As we know, Ethernet VLANs can not communicate directly with each other – they require a L3 device to forward packets between separate broadcast domains. The same restriction applies to PVLANS – since the subdomains are isolated at Level 2, they need to communicate using an upper level (L3/packet forwarding) device – such as router.
In reality, different VLANs normally map to different IP subnets. When we split a VLAN using PVLANs, hosts in different PVLANs still belong to the same IP subnet, yet now they need to use a router (L3 device) to talk to each other (for example, by using Local Proxy ARP). In turn, the router may either permit or forbid communications between sub-VLANs using access-lists. Commonly, these configurations arise in “shared” environments, say ISP co-location, where it’s beneficial to put multiple customers into the same IP subnet, yet provide a good level of isolation between them.
more ->
http://blog.ine.com/2008/07/14/private-vlans-revisited/
To begin with, recall that VLAN is essentially a broadcast domain. Private VLANs (PVANs) allow splitting the domain into multiple isolated broadcast “subdomains”, introducing sub-VLANs inside a VLAN. As we know, Ethernet VLANs can not communicate directly with each other – they require a L3 device to forward packets between separate broadcast domains. The same restriction applies to PVLANS – since the subdomains are isolated at Level 2, they need to communicate using an upper level (L3/packet forwarding) device – such as router.
In reality, different VLANs normally map to different IP subnets. When we split a VLAN using PVLANs, hosts in different PVLANs still belong to the same IP subnet, yet now they need to use a router (L3 device) to talk to each other (for example, by using Local Proxy ARP). In turn, the router may either permit or forbid communications between sub-VLANs using access-lists. Commonly, these configurations arise in “shared” environments, say ISP co-location, where it’s beneficial to put multiple customers into the same IP subnet, yet provide a good level of isolation between them.
more ->
http://blog.ine.com/2008/07/14/private-vlans-revisited/